

Ground Software

Jeff Johnson
Software Engineer
NRL
202-404-1228
jjohnson@sgss.com

Top Level Requirements

- Provide Command, Control, and Telemetry Support for All FAME Integration and Test Configurations (SOTB, STB, Flight Controller EAGE, Spacecraft EAGE, ELSE, SATSIM)
- Provide Command, Control, and Telemetry Support for All FAME Operational Configurations (MOC, SOC)
- Provide Compatibility With NRL's Blossom Point (BP) Ground Station System Architecture
- Support a Dedicated 11.3 M Limited Motion Antenna System at BP
- Provide Automated Control of Ground Configurations Via an Extendible Scripting Language
- Support Telemetry Acquisition and Processing for a Continuous CCSDS Packetized Data Stream at a the FAME Data Rates
- Forward Science Data Packets and Instrument SOH Packets to the SOC in Real-time
- Support Monitoring of the On-orbit FAME Observatory, Including Systems Status Analysis, Limit Checking, Out-of-limits Reporting and Trending Analysis
- Provide Telemetry Archive and Playback for Both Science Data and SOH Data
- Support Command Uplink and Verification Per CCSDS COP-1 Protocols
- Support Three Command Modes: Real-time, Ground Preplanned, and Onboard Scheduling Based on Uplinked Command Loads
- Support Verification of Command Execution, Analysis of Results, Investigation of Anomalies, and Response to Off-Nominal Situations
- Support Initiation of Safing Measures Whenever It Is Determined That a Critical Event Seriously Jeopardizes the Mission If It Were to Continue to Operate Beyond Defined and Acceptable Operating Limits
- Support Calculation of S/C Velocity Knowledge, Range, and Range Rate Data to 1 cm/sec

Derived Requirements (1 of 4)

Telemetry

- Support CCSDS Downlink Decoding and Processing at the FAME Telemetry Rates
- Provide Packetized and Stream Decommutation
- Provide Limit Checking and Alarm Detection
- Provide Time Tagging Support of Incoming Telemetry
- Provide Engineering Unit and Discrete Conversion
- Provide Raw and Engineering Converted Displays
- Support Derived Telemetry Processing
- Provide Telemetry to Application Software (Subscribe/Unsubscribe)

Commanding

- Support CCSDS Uplink Processing and Encoding at the FAME Commanding Rates
- Support CCSDS (COP-1) Command Uplink Verification
- Support Command Formatting
- Support Command Release Time
- Support Blocks of Commands
- Support Restricted/locked Commands (Requiring Special Authorization)
- Provide for User Defined Command Verification (Based on Vehicle Telemetry)
- Provide the Ability to Inhibit Command Verification
- Provide for Error/retry Processing
- Provide a Command History

Derived Requirements (2 of 4)

Memory Processing

- Provide for Flight Memory/table Loading, Dumping and Verification
- Provide for Merging of Multiple Copies of Memories
- Provide Notification of Download Status (Begin/in Progress/complete)
- Provide Off-line Decommutation of Recorded Telemetry
- Provide Comparison of Command Loads Versus Memory Dumps
- Provide Results of the Memory Comparison to the Online System for Subsequence Loads

Archive/playback

- Record/playback All Telemetry and Commands With Time Tags
- Record and Retrieve All Alarms, Alerts, and Operator Interaction With Time Tags
- Provide the Ability to Inhibit Recording
- Provide Tools to Analyze and Generate Reports/graphs From Recorded Data
- Provide Tools to Analyze and Generate Reports/graphs Long Term Archived Data
- Support Playback Concurrent With Active Data Collections
- Provide Playback Control (Start, Stop, Pause, Resume, Rewind, Start Time, Stop Time, Speed)
- Provide Searchable Logging of All Processing Errors and Warnings
- Provide Tools to Compress Recording Files for Long-term Storage

Derived Requirements (3 of 4)

General

- Provide Operator Messages (Pop-up/scrolling)
- Provide Color Coded Alarms/alerts/info Messages to the Operator
- Provide Alarm/alert/info Message Filtering
- Provide Alpha-numeric and Graphical Displays
- Provide Telemetry/commanding Reports and Trending
- Support Printing of Alpha-numeric and Graphical Displays and Reports
- Provide Health and Status Telemetry Displays Via an Internet Browser Interface
- Provide Periodic on Line Statistics for All Processing
- Support Processing on a LAN or WAN Using Various Processing Nodes
- Support a Heterogeneous Network of Nodes for Off-line Analysis
- Automatically Verify and Archive All Formal Test Results
- Hardware Support
 - Control All Ground System Hardware (GPIB, Serial, Enet, VME, Special Interface)
 - Collect and Process Ground Equipment Telemetry
- Mission Unique Software
 - Provide Test Data Generation and Validation Tools
 - Provide Software Required to Set and Maintain Satellite Time
 - Provide Software Required to Time Assign Telemetry to Within 1ms UTC

Derived Requirements (4 of 4)

- Software Development
 - Write Application Software in "C"
 - Write Application Scripts in csh, sh, tcl, or perl
 - Follow the FAME CM Plan Using a COTS CM Tool
 - Provide Maintainable Ground Software
 - Provide Testable Ground Software
 - Provide Extensible Ground Software
 - Provide Consistent Ground Software

Major Trade Studies

- Space/Ground Interface
 - CCSDS Recommendations
 - Conventional Packet Telemetry and Telecommand Recommendations
 - Advanced Orbiting System (AOS) Recommendations
 - "Hybrid" Approach
 - AOS Recommendations for Telemetry
 - Conventional Recommendations for Commanding
 - Telemetry Format
 - Frame Size (Efficiency vs. Responsiveness)
 - Grade of Service (Efficiency vs. Error Protection)
- Reusable Software (COTS, GOTS, and NDI)
 - Core Spacecraft Control System Toolkits and Components
 - Command, Control and Telemetry Application Processing
 - Command and Telemetry Database Tools
 - Command-Response Spacecraft Simulation Tools
 - Web-based Telemetry Monitoring Components
 - Software Development Tools

Issues

- Closed-loop Simulation Requirements
- Final Selection of Core Spacecraft Control System Toolkit Per AOVC Evaluation (e.g. BP/Comet, Itos, OS/Comet)
- Roles and Responsibilities of BP Personnel for MOC Development
 - Antenna Monitoring and Control
 - Front-end Processor (FEP) Development and Interfaces
- Roles and Responsibilities of Science Team Personnel for SOC Development
 - Collection of Science Data
 - Does Some of the MOC Software Also Run at the SOC (e.g. Comet)?
 - Does the Science Data and Instrument SOH Data Get Transmitted to the Soc Using Sockets (or Comet Software Bus) With CCSDs Application Packets / Star Data Packets?
 - Storage Format of Science Data (Comet Recording Files?)
 - Processing Requirements for Science Data (Data Analysis)
- FEP for I&T Differs From the BP FEP Concept

Backup – 1 FAME Spacecraft and Ground Equipment Control Design

Backup-2Typical EAGE Design

Ground Software Is on Sun Workstation and VME Chassis (VxWorks)

EAGE Rack(s)

Connections for Data and Power With Break Out Boxes

Device Under Test

BoBL

Devices Controlled By GPIB Via Enet

EAGE VME Chassis

Battery Sim Sig Gen

Receiver

BPU

Power Supply UPS C&T Workstation

(Monitor)

100 Mbit Enet for C&T

Router

NRL Network

Backup – 3 Typical EAGE Ground SW Design

1) The Software Bus Allows Us to Configure Components on Any Node in the LAN. The **Telemetry and Commands May Come From/go** to Any Interface (1553, Frame Sync, Serial)

